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TRANSPORT PROPERTIES AT HIGH TEMPERATURES OF
CO9-Ng-0O2-Ar GAS MIXTURES FOR PLANETARY
ENTRY APPLICATIONS

By Jerry S. Lee* and Percy J. Bobbitt
Langley Research Center

SUMMARY

The equations and assumptions employed to compute the viscosity, thermal conduc-
tivity, and Prandtl number for high-temperature gas mixtures which, at low tempera-
tures, may be composed of arbitrary percentages of CO2, N9, Og, and Ar are presented.
Ionization phenomena are not considered; hence, the results are limited to pressures and
temperatures where dissociation reactions dominate. Numerical results are obtained for
three different "atmospheric' gas mixtures: air, 100 percent COg, and a mixture of
43 percent CO2, 25 percent N2, and 32 percent Ar (by vol.). Comparisons of the latter
two mixtures with air and, also, of air and CO9 with the results of other investigations
are given. In addition, transport properties computed from the full equations of the first
approximation of the Chapman-Enskog rigorous kinetic theory are compared to those
computed from first and second approximations to these equations.

INTRODUCTION

The Martian atmosphere, as well as other planetary atmospheres, is believed to
consist primarily of carbon dioxide, nitrogen, and argon. In order to perform meaningful
boundary layer and wake analyses for entry spacecraft, reasonably accurate values of the
high-temperature thermodynamic and transport properties of these atmospheres are
required. Thermodynamic properties of several NASA Mars model atmospheres have
already been calculated (refs. 1 to 4). In this report, attention is focused on the calcula-
tion of viscosity, thermal conductivity, and Prandtl number of dilute, ideal gas mixtures
in a state of local chemical equilibrium. The mixtures consist of a maximum of nine
chemical species: COg2, Oz, N9, NO, CO, O, N, C, and Ar. A specific mixture need not
contain all nine of these species.

There are several approaches to the computation of transport properties of multi-
component mixtures. The first approach, such as presented by Kennard (ref. 5), makes
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use of simple kinetic theory based on mean free path concepts. The second approach
makes use of the more precise Chapman-Enskog theory (ref. 6) which was extended to
multicomponent mixtures by Hirschfelder, Curtiss, and Bird (ref. 7) and which was modi-
fied to account for multiple atomic interactions by Mason, Vanderslice, and Yos (ref. 8).
The third approach makes use of the kinetic theory of polyatomic gas mixtures developed
by Monchick, Yun, and Mason (ref. 9).

The first two approaches apply rigorously only to dilute, nonreactive, monatomic
gas mixtures, and the third applies to dilute, nonreactive, polyatomic gas mixtures,
Thus, in a strict sense, none of these theories can be used for the mixtures under con-
sideration without modification. Of the three approaches, the third is the most applicable.
However, utilization of this theory requires extensive knowledge of rotational and vibra-
tional relaxation times which, unfortunately, are not currently available for all of the
polyatomic species. In this work, a slight modification of the second monatomic gas
theory, referred to as the rigorous kinetic theory, is used.

The principal modification consists of the introduction of an expression (ref. 10) to
account for the effects of internal degrees of freedom on thermal conductivity. For vis-
cosity and the translational portion of the thermal conductivity, the equations resulting
from the first approximation (i.e., the lowest Sonine approximation leading to nonzero
results for the transport properties) of first-order Chapman-Enskog perturbation theory
(ref, 7) are used directly. In other words, internal degrees of freedom and chemical
reactions are assumed to have negligible perturbing effects on these equations. The
results of Butler and Brokaw (ref. 11) are used to compute a reactive contribution to the
thermal conductivity. It is also assumed that the collision integrals involved in all these
equations, referred to herein as the full kinetic-theory equations, can be evaluated from
orientation-averaged interaction potentials.

Although the basic equations for calculating transport properties are well known
(refs. 7 and 10 to 14), the collision integrals needed in these equations have not yet been
determined for all pairs of species present in the atmospheric models. Fortunately,
many of the interactions of importance also occur in air, and these have received con-
siderable study (refs. 15 to 19). Herein, the tables of Yun and Mason (ref. 19), containing
the most important air-collision integrals, are used.

The procedure followed in obtaining collision integrals for the remaining interac-
tions — namely those associated with CO9, CO, C, and Ar — is a modification of the tech-
nique employed by Amdur and Mason (ref. 20). For each interaction, appropriate low-
temperature and high-temperature potentials are obtained from experimental data and/or
approximate calculations, Then, the low-temperature and high-temperature collision
integrals determined by these potentials are plotted as a function of temperature, and the
two branches are joined by a smooth curve. Although this curve is not uniquely defined,



the technique should be markedly superior to using collision integrals generated from
low-temperature potentials throughout the entire temperature range.

Numerical results for viscosity, thermal conductivity, and Prandtl number are
obtained for three different atmospheres: air, 100 percent CO9, and a mixture (referred
to herein as the Mars model atmosphere) of 43 percent COg, 25 percent N9, and 32 per-
cent Ar (by vol.). Comparisons of the latter two atmospheres with air and of the present
air results with those of Hansen (ref. 21) and Yos (ref. 22) are shown. The CO9 results
are compared with those of Thomas (ref. 23) and Van Tassell (ref. 24). Transport prop-
erties obtained from the full kinetic-theory equations are compared with those obtained
from first and second approximations to these equations.

SYMBOLS
A parameter in exponential repulsive potential (eq. (6)), electron volts
A;‘j collision integral ratio
a parameter in exponential repulsive potential (eq. (6)), 1/angstrom
Bi"j coilision integral ratio
b impact parameter
Cl,ij’cz,ij’c3,ij’ constant defined by equation (B10), (B11), (B12), (B24), and (B25),
C4,ij,Cs5 ij respectively
Cp mixture specific heat at constant pressure (per mole of undissociated
mixture)
c; nondimensional mixture specific heat at constant pressure, %2
Cp,i molar specific heat at constant pressure of species i
C;,i nondimensional specific heat at constant pressure of species i, -cg—’l
Dj; binary diffusion coefficient of species i and j
d parameter in point center of repulsive force potential (eq. (5))



distance from center of mass of molecule to O or N atom

element in reactive conductivity determinants (eqs. (B30) and (B31))

nondimensional element in reactive conductivity determinants (eqs. (41)
and (42), 22 By

initial relative speed of colliding particles

enthalpy of reaction for reaction i

AH;
nondimensional enthalpy of reaction for reaction i, FI‘E
element in viscosity determinants (eqs. (B2) and (B3))
nondimensional element in viscosity determinants (egs. (25) and (26)), NoHij
molar enthalpy of species i

hj

nondimensional molar enthalpy of species i, RT

indices
Boltzmann's constant
elements in translational conductivity determinants (egqs. (B17) and (B18))

nondimensional elements in translational conductivity (eqs. (31) and (32)),
AoLsj

molecular weight of species i
molecular weight of undissociated mixture
mass per particle, grams

Avogadro's number



NPr,I

Npr i

nij

Prandtl number

first approximation to Prandtl number

second approximation to Prandtl number

parameter in point center of repulsive force potential (eq. (5))
stoichiometric coefficient of species j in reaction i
pressure, atmospheres

universal gas constant, ergs per °K-mole

distance between colliding particles, angstroms

value of r at potential energy minimum

distance of closest approach of particles

absolute temperature, °K

nondimensional absolute temperature, I

e/k

number of independent reactions

symbolic representation of chemical symbol for species i

moie fraction of species i

parameter controlling steepness of repulsive part of exp-6 potential
exp-6 parameter for binary collision of particles of species i

exp-6 parameter for binary collisions of particles of species i and j

temperature parameter used in finding collision integrals for exponential
repulsive potential (eq. (22))



1/2
Y nondimensional relative velocity, (ﬁ) g

Aij parameter in reactive conductivity equations
A
A;‘j nondimensional parameter in reactive conductivity equations, -ITO Ajj
€ depth of potential well, electron volts
€ depth of potential well for interaction of two particles of species i,

electron volts

depth of potential well for interaction of two particles of different species i

€j
and j, electron volts
n viscosity
n* nondimensional viscosity, %
ni" first approximation to viscosity
ni"I second approximation to viscosity
5 viscosity of pure species i
Mo reference viscosity, 3.20295 X 10-9 ﬁ, grams per centimeter-second
A total thermal conductivity
2* nondimensional total thermal conductivity, A
0
Af first approximation to total thermal conductivity
Ai"I second approximation to total thermal conductivity
As frozen thermal chductiw./ity, At + Aint



first approximation to frozen thermal conductivity

second approximation to frozen thermal conductivity

A

nondimensional frozen thermal conductivity, bW
0

conductivity of pure species i
internal contribution to total thermal conductivity

A
nondimensional internal conductivity, -—;ﬁt
0

reference thermal conductivity, 4.16118 X 103 ﬁ,
ergs per centimeter-°K-second

reactive contribution to total thermal conductivity

. . . A
nondimensional reactive conductivity, xll
0

first approximation to reactive conductivity
translational contribution to total thermal conductivity

Yy
nondimensional translational conductivity, Xt—
0

first approximation to translational conductivity
second approximation to translational conductivity

m-m.
reduced mass, —+ 1

mj + m;j
total number of species considered

collision diameter, angstroms



collision diameter for binary collision of species ‘i

%
0ij collision diameter for binary collision of species i and j
o} interaction potential, electron volts
X angle of deflection
Q(l’s) collision integral
* @,s)
Q(l’s) nondimensional collision integral, M S)z ‘
s
s-Zri,gid sphere
*
Q(l’s) modified collision integral, GZQ(Z’S) s a.ngstroms2

ANALYSIS

Thermodynamic Properties

The thermodynamic properties required in calculating mixture transport properties
are the mole fractions, the mixture constant-pressure specific heat, the species constant-
pressure specific heats, and the species enthalpies. For each mixture, these properties
were calculated by using the computer program developed by Allison (ref. 3) and Newman
and Allison (ref. 4). Figures 1, 2, and 3 show the dependence of the mole fractions on
temperature for pressures of 0.001, 0.01, 0.1, 1.0, and 10 atm for air, COg, and the Mars
model atmosphere (43% CO2, 25% N2, 32% Ar (by vol.)), respectively. Figures 4, 5, and 6
show the variation of the nondimensional specific heat of these mixtures with temperature
for the same pressures. The nondimensional species specific heats and species enthal-
pies are shown in figures 7 and 8, respectively, and apply for all three mixtures.

Inspection of figures 1 to 3 reveals that electrons and ionized atoms become impor-
tant at the higher temperatures, especially at low pressure. Since ionization is not
included in subsequent transport-property calculations, it is necessary to specify regions
of validity for these properties. More is said about this in the section "Results and

Discussion."

Potentials

As noted in the Introduction, transport properties depend upon the collision integrals
for each pair of chemical species in the mixture. These collision integrals, in turn,
depend upon the interaction potentials for the possible binary encounters. It is therefore

8



appropriate at this point to enumerate all possible binary interactions for a mixture of
CO2, O9, N9, NO, CO, O, N, C, and Ar. These interactions are given in table 1.

With reference to table 1, parentheses around a pair designate that its interaction
potential has been considered previously and that the corresponding collision integrals
can be obtained from the tabular values of Yun and Mason (ref. 19). Brackets around a
pair mean that an accurate interaction potential for the pair is not critical because one or
both of the mole fractions associated with the pair are always small. Table 2 summa-
rizes the potentials used in the computations. The atom-atom potentials listed in this
table apply to the interaction of atoms in their ground electronic states. For the limited
temperature range considered herein, such potentials are adequate.

In the following paragraphs, some general comments are made about the interaction
potentials. Then attention is focused on specific cases with special emphasis placed on
pointing out the difficulties encountered and the assumptions invoked.

The potentials used at low temperature are the Lennard-Jones 6-12 potential,

¢ = 4e @12 . (‘—5)6 (1)

and the modified Buckingham exp-6 potential
o - &) 6
m r
-8 i <_m> @

Potential parameters (i.e., €, 0, ¢, and rpm) for many of the like-like interactions
were obtained from references 7 and 25 for the 6-12 and exp-6 potentials, respectively.
In the absence of experimental data, potential parameters for interactions of unlike mol-
ecules were generated from those for like molecules by using empirical combining rules.
For the 6-12 potential,

i
Oij 5 ! (3a)
61] = Eiej (3b)
and for the exp-6 potential,
Tm,i * Tm,j
rm,ij = _Lz_i (43.)



Gi ] = GiEj (4b)

o + o

These rules hold well for the interaction of molecules i and j provided these mole-
cules have essentially spherically symmetric force fields. The sources from which
potential parameters were obtained are given in table 2.

At high temperatures the repulsive portion of the potential primarily determines
the collision integrals (ref. 7). Under these conditions, two potential forms were used:
the point center of repulsive force potential

d
¢ == (5)
T
and the exponential repulsive potential
¢ = Ae”2T (6)

where d, n, A, and a are constants for a given interaction. Potentials derived from
molecular beam scattering experiments are normally cast in the first form, although the
second can be used. Results of semiempirical quantum mechanical calculations are
usually presented in the second form which has some theoretical basis. According to
Amdur and Mason (ref. 20), equation (6) usually remains valid over a wider range of r
than equation (5). For both potentials, experiment seems to confirm a geometric mean
rule for finding potentials for unlike atoms from those for like atoms (ref. 20). That is,
if ¢(D-D) denotes the interaction potential for two D atoms and if ¢(E-E) denotes the
interaction potential for two E atoms, then the interaction potential for atoms D and E is
given by (refs. 20, 26, 27, and 28)

¢(D-E) = [¢(D-D) ¢(E-E) ()

It should be emphasized that this rule does not apply to atom-molecule or molecule--
molecule interactions.

Many of the high-temperature atom-molecule and molecule-molecule interaction
potentials listed in table 2 were obtained by averaging appropriate atom-atom potentials
over all orientations as was done in references 19 and 28 for binary interactions of atoms
with diatomic molecules and diatomic molecules with diatomic molecules. Appendix A
extends this technique to include interactions with the triatomic CO2 molecule. Specific
cases are treated in the following sections,

10



Carbon monoxide interactions.~ Figures 2 and 3 show that €O is a major constitu-
ent in the CO2 and CO9-Ng-Ar mixtures throughout most of the temperature range con-
sidered. Consequently, reliable transport property computations hinge strongly on knowl-
edge of potentials for the various CO-molecule and CO-atom interactions. Yet there
exists only a meager amount of information on these potentials, especially at high tem-
perature. Specifically, molecular beam scattering experiments on the Ar-CO system
yield (ref. 29)

551

ro.

#(Ar-CO) = ev (2.09 Asr=2684) (8)

To the authors' knowledge, no high-temperature potentials are presently available for the
remaining CO interactions.

Because of this lack of data, it was necessary to resort to reasonable approxima-
tions. The logic used proceeds as follows. Since CO and N9 have very similar nuclear
and electronic structures and since these factors play a dominant role in determining
intermolecular potentials, it appears plausible to assume that CO and N9 behave similarly
during molecular encounters. An indication of the validity of this assumption is provided
in figure 9 where the high-temperature scattering potential for Ar—Nz1 (ref. 29),

567

200 2.04 Asr =253 4
7,06 eV (2.0 r 53 A) (9)

¢(Ar-N) =

is compared to the Ar-CO potential given by equation (8). The percent difference in
energy varies from about 3 percent at the smallest common value of r to about 4 per-
cent at the highest common value of r. From the standpoint of transport-property com-
putations, the comparison is extremely favorable because the potentials enter these com-
putations solely through collision integrals, and these quantities are relatively insensitive
to the magnitude of the potentials. Figures 10 and 11, which compare the two most
important collision integrals for the potentials of equations (8) and (9), clearly demon-
strate this point. The percent difference in corresponding collision integrals never
exceeds 3.1 percent. Figures 12 and 13 compare low-temperature collision integrals for
CO-CO and N3-N9 interactions. The Lennard-Jones 6-12 potential with parameters
derived from viscosity measurements (ref. 7) was used for each interaction. Again the
agreement-is remarkable.

1The high-temperature potential listed in table 2 for Ar-Ng differs from equation (9).
Equation (9) is valid for a higher temperature range than considered in the transport-
property computations. It is used here simply because its range of validity is very
nearly the same as that of equation (8). Were this not true, the comparisons would
be meaningless.

11



Based on these comparisons, it was assumed that the potential for each CO inter-
action could be replaced by the potential for the analogous N2 interaction; for example,
CO-0g was treated as N9-Og. This assumption is incorporated in table 2.

Argon interactions.- With the exception of the Ar-COg, Ar-C, Ar-0O, and Ar-NO
interactions, table 2 provides adequate explanation of the methods employed to formulate
interaction potentials for the various argon interactions. Potentials for Ar-CO2 and
Ar-C interactions are considered in later sections dealing with carbon dioxide and carbon
interactions, respectively. This section deals with high-temperature potentials for the
Ar-O and Ar-NO interactions.

The high-temperature Ar-O potential was calculated from the geometric mean rule
(eq. (7)) with

H(Ar-Ar) = 3.23 x 10% e4-4647 oy (10)

and
$(0-0) = 32.56 e~2-197T oy (11)

where ¢(Ar-Ar) was taken directly from reference 20 and ¢(0O-0O) was obtained from
a least-squares curve fit of Meador's results (ref. 18).

It should be noted that Vanderslice, Mason, and Maisch (ref. 17) also present a
potential for the O-O interaction. When their result is used, ¢(Ar-0) differs apprecia-
bly from that given in table 2. However, the collision integrals corresponding to the two
potentials differ very little. Meador's result for ¢(O-O) was chosen primarily because
it leads to greater consistency with known low-temperature potentials when it is used in
the construction of high-temperature potentials for more complex interactions, such as
CO2-09, by the orientation-averaging technique. The same situation exists for the N-N
interaction, which arises in the computation of the Ar-N interaction.

To calculate the high-temperature Ar-NO potential, the technique of averaging indi-
vidual atom-atom interaction potentials over all molecular orientations was employed
(ref. 19). This procedure yields

A e'aArOr
$(Ar-NO) = —ALO - (a T+ 1) sinh (a d ) - ax.0dp cosh (ap,od
= 2 ArO ArO~0 ArO“oO Aro%Q
2aro%0”
AArNe_aArNrr
r— . i [ga ArNT + 1) sinh a, Ny - 258y COSh (a ArNd-Ni] (12)
qArNN
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where Apar0) 35,00 AppNs and a,. are exponential repulsive potential param-
eters for the Ar-O and Ar-N potentials (eq. (6)); r is the distance from the center of
mass of the nitric oxide molecule to the argon atom; and dg and dyy are the distances
from the center of mass of the nitric oxide molecule to its oxygen and nitrogen atoms,
respectively. The Ar-O parameters can be obtained by inspection of ¢(Ar-0O) in

table 2. The Ar-N parameters come from

S(Ar-N) = 2025¢3:99T oy (13)

Equation (13) was obtained from the geometric mean rule using the Ar-Ar potential pre-
sented in equation (10) and Meador's result for the N-N potential (ref. 18),

H(N-N) = 127e~2-T16T oy (14)
According to Herzberg (ref. 30),
do = 0.53667 A
dy = 0.61333 A

In order to make use of available tables of collision integrals, a least-squares curve fit
of equation (12) was performed to obtain the exponential repulsive potential presented in
table 2.

Carbon dioxide interactions.- All low-temperature potentials in table 2 for COg

interactions except those for C0O2-C0O2, CO2-NO, and COg-Ar are based on experimental
diffusion coefficient determinations (ref. 31). Lack of such data for CO9-NO and COg-Ar
interactions necessitated use of viscosity data and the combining rules given in equa-
tions (3).

The validity of using the low-temperature CO9-COg potential in table 2 in the calcu-
lation of multicomponent mixture transport properties is open to question. Recent self-
diffusion coefficient measurements for CO9 between 1103° K and 1944° K indicate that
different sets of 6-12 parameters are required to correlate viscosity and self-diffusion
data (refs. 32 and 33). Use of the potential from viscosity measurements in the prediction
of self-diffusion coefficients, and vice versa, can produce errors as high as 30 percent or
40 percent.at temperatures around 2000° K. Quite likely the need for two distinct poten-
tials to correlate experimental results arises from the fact that CO9 is a long linear mol-
ecule with a nonspherical force field. Based on this evidence, one must conclude that the
theory does not yield uniformly good results for CO3.

13



In an effort to decide whether the viscosity or self-diffusion potential was more
appropriate for present purposes, the low-temperature viscosity and thermal conductivity
of pure COy were calculated by using both potentials. The viscosity potential led to good
agreement with experimental viscosity and conductivity correlations (ref. 34) for COg,
and the diffusion potential led to poor agreement. Therefore, it was assumed that the
viscosity potential should also be more appropriate for mixture computations. It should
be noted, however, that the situation might be reversed in the computation of multicom-
ponent diffusion-coefficient properties which are not considered herein.

With the exception of the CO2-N and COy-C interactions, the high-temperature
COg-molecule and COg-atom potentials in table 2 were derived by averaging atomic
interactions over all orientations. Appendix A contains all pertinent equations used in
this procedure. Since these equations contain the C-O, C-C, C-N, and C-Ar interaction
potentials and since these potentials are not currently available, it was necessary to
introduce further approximations. The C-0O potential was approximated with the N-N
potential; and in the last three interactions, the carbon atom was treated as a nitrogen
atom. These approximations are not as critical as it might appear because the averaging
process automatically emphasizes the interactions of the peripheral atoms. Finally,
establishment of CO9-Ng and CO3-NO potentials requires knowledge of ¢(N-O). For
both potentials,

H(N-0) = 69.17¢2-996T oy (15)

was used. This potential was found by curve-fitting Meador's results (ref. 18). After the
introduction of these approximate potentials into the equations of appendix A, each
orientation-averaged potential was replaced by a least-squares curve {it to obtain the
results presented in table 2.

Carbon interactions.- The assumption that carbon atoms can be replaced by nitrogen
atoms was also utilized in obtaining potentials for the interaction of carbon atoms with the
various atoms and molecules. This assumption is much more critical because carbon—
other-atom potentials occur in every term of the orientation-averaged potentials.

Collision Integrals

As noted previously, interaction potentials enter transport-property computations
through a set of collision integrals. For the interaction of particles i and j alonga
single potential ¢, the integrals are defined by the following formulas (ref. 7):

x=7T-2b dr (16)
r2 1_2%_ ¢
2 1
r;n T zugz

14



- W .l
N

O A0
alts) _ \,2_72@_ 50 SO e-v*zy*25+3 (1 - cosl x)b db dy* (1)

In general, two ground state atoms can interact along any one of several potential
energy curves. For this situation, equations (16) and (17) must be evaluated for each
curve, and then all of the resulting collision integrals with the same superscripts are
averaged with a priori assigned weighting factors to yield an effective set of collision
integrals for the interaction (ref. 8). These computations have been performed for the
atom-atom interactions of importance in dissociating air (ref. 19), and fortunately, many
of the same results also apply for the mixtures under consideration.

The basic-mixture transport-property equations are usually expressed in terms of
reduced collision integrals. In reference 7, which is probably the most widely used ref-
erence for gaseous transport theory, the transport properties are formulated in terms of
a set of quantities SZ(Z’S)*, defined as the ratio of equation (17) to the corresponding
expression for the rigid sphere model; that is,

(18)
rigid sphere

In the tabulations of the collision integrals of air, Yun and Mason (ref. 19) employed the
slightly modified form,

5(1,8) - UZQ(Z’S)* (19)
where o denotes the collision diameter. Since these tabulations were used in the pres-

ent work, this notation was adopted for all interactions.

The following collision integrals and collision integral ratios are required to com-
pute mixture viscosity and thermal conductivity:

51(]1 1) (202)
—(2,2
a2?) (20D)
=(2,2)
PR (20¢)
i1 LD
ij
1 '—(1’1)
D
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In these equations, subscripts i and j designate quantities associated with the inter-~

action of species i and j.

For a given pair of species, that is for fixed i and j, ﬁg 1) and 51-(32’2) vary

considerably with temperature. In addition, at a fixed temperature, both quantities differ
significantly for different pairs of species. On the other hand, A’i"j and B;‘j vary little
regardless of the temperature or of the pair of species considered. This fact is illus-
trated in figures 14 and 15 where these quantities are plotted for the Lennard-Jones 6-12
and modified Buckingham exp-6 potentials. Figure 16 shows the quantities for the expo-
nential repulsive potential. The abscissa in figures 14 and 15 is defined as

T
T = = 21
ok (21)
and that in figure 16 as
A
= Inf— 22
B (m) (22)

Generally, for the low-temperature potentials in table 2, the extreme right-hand portions
of figures 14 and 15 apply. Furthermore, B normally ranges between 7 and 10. As can
be seen from the graphs, little error should incur if A;‘j and B’{j are arbitrarily

assigned the constant values

*

B’i"]- =1.15 (23b)

These values give slight emphasis to the exponential repulsive potential (fig. 16) because
of its appropriateness at the higher temperatures of interest. At any rate, actual values
should deviate from the assigned ones by less than 5 percent. These results were used
in all transport-property calculations.

For 'S_Zfll 1)
variations mentioned; consequently, it was necessary to consider each individual inter-
action. Collision integrals for interactions that occur in air were taken directly from
reference 19. Collision integrals for the remaining interactions, given in table 3, were
obtained by essentially the same method employed in references 19 and 20. The principal
steps followed in this procedure were as follows. For each interaction, €'’ was
computed for both the low- and high-temperature potentials and plotted as a function of
temperature. This produced a curve consisting of two branches whose ranges of \ialidity
were estimated by using the technique of Hirschfelder and Eliason (ref. 35). The

and -ﬁi(jZ,Z) no simple approximations hold because of the significant

16



(1,1)

branches were then joined by a single smooth curve from which values of were
read. This procedure was also used for 5(2’2). Collision integrals for the Lennard-
Jones 6-12 potential were obtained from reference 7; those for the modified Buckingham
exp-6 potential from references 7 and 25; those for the point center of repulsive force
potential from reference 36; and those for the exponential repulsive potential from

reference 37.

Although there is no way of checking the absolute accuracy of the results presented
in table 3, it should be pointed out that the calculation procedure outlined is intrinsically
more accurate for some interactions than others because of variation in the lengths of the
"faired-in" curves. To illustrate this point, curves used for the Ar-Og9 and CO3-09y
interactions are shown in figures 17 to 19. Figure 20 gives '’/ for the CO9-Og
interaction computed from both the high- and low-temperature potentials. No faired
curve is given, however, since the upper curve does not become valid until the tempera-
ture exceeds the range considered. Clearly, the Ar-Og results should be more accurate
than the CO9-0O9 results. Actually, the CO2-Og9 curves are typical of all curves encoun-
tered for COgy interactions. This further bears out the point made earlier concerning the
uncertainty associated with COg interactions.

Transport Properties

In the preceding sections all requisite data for computing viscosity, thermal con-
ductivity, and Prandtl number have been presented. This section summarizes convenient
forms of the equations for these properties. In addition, possible causes of numerical

inaccuracy are pointed out, and techniques for alleviating inaccuracy are given.

Because of the complexity of the kinetic-theory equations for viscosity and thermal
conductivity of multicomponent mixtures, investigators (refs. 38 and 39, for example)
have developed a number of relatively simple approximations, which "normally" yield
values within a few percent of those attained from the full equations. In this note, the full
equations were employed for the following reasons:

1. As pointed out by Brokaw (ref. 14), inherent deviations in individual properties
introduced by the use of approximate formulas may be such that errors are magnified in
forming such ratios as the Prandtl number.

2. The systems under consideration are simple enough that the full equations can be
solved very rapidly with the aid of a high-speed computer.

For purposes of assessing the validity of using approximate equations and also of
comparing the final results with those of other authors, first and second approximations
to the viscosity, translational thermal conductivity, and a first approximation to reactive
conductivity are included in the following subsections. These equations as well as the
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special forms of the full equations are derived from more familiar equations in
appendix B.

Viscosity.- It is shown in appendix B that the full kinetic-theory expression for the
viscosity of a v-component, monatomic gas mixture can be expressed in dimensionless

forms as
* * *
Hyp Hyg -2 Hp #
* * *
le H22 .« e » HZV X2
* %k %
HlV HzV « o e HVV XV
Xl X2 « s e XV 0
n* =- : o - (24)
H*
1)
where
, 1208 ALY
Hy = T x1 +2 xliC1 ij% (25)
: 5 4
A
(1 1) 3 % .
Hjj = -2%;%iC2 1% -5 Ajj G#35)  (26)

and C; and Cg are defined by equations (B10) and (B11).

Also shown in appendix B are the first and second approximations to equation (24),

2
X.
e ) (27)
1=1 ii
and
v 2 v vV *
« VA X 28
T LT B H (@8)
i=1 i i=1j=1 “iiT]]
j#i
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Although equation (24) applies rigorously only to dilute monatomic gas mixtures, it
is well known that the presence of internal degrees of freedom has very little influence
on viscosity (ref. 7). Hence, this result was applied without modification to the mixtures

‘of monatomic, diatomic, and triatomic species under consideration.

In using equation (24), care must be exercised to obtain meaningful results.
Inspections of equations (25) and (26) reveals that both Hi"i and Hi"j approach 0 as x;
approaches 0. Under these conditions, both the numerator and denominator in equa-
tion (24) become small and the ratio approaches the indeterminant form 0/0. To apply
the equation correctly, only those rows and columns associated with chemical species
actually present in the mixture should be included. This means that the orders of the
determinants may change with changes in temperature and pressure. In other words,
when a given species disappears because of dissociation, its row and column must be
omitted, and the remaining rows and columns must be shifted to fill the void. Likewise,
when a new species appears, a new row and column must be included. However, the
inclusion of new rows and columns can be avoided by initially formulating equation (24)
s0 as to account for all possible species. Then one is concerned only with omitting
appropriate rows and columns. This process can be actuated either by inspecting the
magnitude of x; or H;‘i and was employed herein.

In addition to providing a means of avoiding numerical difficulty, the deletion pro-
cess inherently results in greater flexibility. Thus, a single general formulation
including many species can easily be specialized to simpler mixtures with fewer species.

Thermal conductivity.- As noted in the Introduction, the rigorous kinetic theory
applies strictly to monatomic gases; thus, it does not account for the presence of internal
degrees of freedom. Although these degrees of freedom do not significantly affect vis-
cosity and diffusion, energy transition among the several degrees of freedom does mark-
edly influence thermal conductivity. At present, however, available polyatomic mixture
theories remain intractable so far as practical computations are concerned; therefore
approximations must be invoked. Energy transport due to the combined effects of diffu-
sion and chemical reactions can become extremely large under certain conditions; hence,

it must be taken into account.

All these effects can be included in approximate fashion by expressing the total con-
ductivity as (ref. 10)

A =X + Ajnt + Ap (29)

where )i designates the translational contribution; Ajnt, the internal contribution; and
Ar, the reactive contribution. A frozen conductivity is also used in the calculations and is
defined as
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Af = At + Aint

First and second approximations Af 1 and Afqp are determined by replacing At in the
equation for Af with At I and xt,II’ respectively. The following paragraphs set forth
the equations used to compute each contribution.

According to appendix B, the results of Muckenfuss and Curtiss (ref. 13) for the
translational conductivity2 can be expressed in nondimensional form as

* * *
L11 L12 . s e L].V xl
* % *
L12 L22 « o LZV X2
* * *
Liy Loy o Ly %
* Xq X9 .o Xy 0
A =4 ” - (30)
Lij
where
(2,2) \ (1,1
* _ 20\4) . o\
Lyj = -2x74; Vﬁl - Z xi%iC2 1jC4,ij%; (31)
i=1
i#
* =(1,1) 7
Lij = %%C2,1iC5,1j%4;5 @#3) (2
The constants C,, C4, and Cg are defined by equations (B11), (B24), and (B25).
, 2 4 5 ’
The first- and second-order approximations to equation (30) are
v 2
* X
Mi=-4 ) — (33)
i=1 Lii

2Two definitions are commonly used for translational conductivity. The present
form applies when the energy flux is expressed in terms of the temperature gradient and
the diffusion velocities.
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and

*

Moo = -4 Zyﬁ*— 421}21/—13@ (34)
i=1 j=1
4

i=1 1

The discussion, given previously in connection with viscosity, concerning the
appearance and disappearance of chemical species as temberature and/or pressure
change also applies to the evaluation of equation (30). Equation (30) was initially formu-
lated to include all nine species. For a mixture containing less than nine species, the
correct form was obtained by first deleting appropriate rows and columns in the numer-
ator and denominator determinants and then shifting the remaining rows and columns to
fill the gaps.

The internal contribution to the conductivity was computed from Hirschfelder's
approximation (ref. 12)

Aint = Y (35)
i=1 z Xj .gll_
=1
together with his generalized Eucken expression (ref. 10),
.., DiiPCp,i 5
Al = A+ T <R 2> (36)

For computational convenience, these equations were combined and the resulting expres-
sion was written in nondimensional form as

At =§§=ZV <* —g) 37)

The reactive contribution to the conductivity arises from the energy transport due
to the combined effects of diffusion and chemical reactions. In regions of high tempera-
ture, dissociation occurs and then the species diffuse down the resulting concentration
gradient to cooler regions where recombination occurs. Simultaneously, there is a flux
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of recombined species from lower to higher temperature. The net effect is a transport
of chemical enthalpy from regions of high temperature to regions of lower temperature.

-The reactive contribution was computed from the original results of Butler and
Brokaw (ref. 11).3 Their formulation requires that the chemical reactions needed to
account for the species present in the mixture be expressed in a special way. From the
total of v species present, t is chosen as independent. Then a system of t reac-
tions is constructed such that each independent species occurs on the left-hand side of
one, and only one, reaction and has -1 as its stoichiometric coefficient. Furthermore,
the right-hand sides of the reactions contain dependent species only; that is, if njj
denotes the stoichiometric coefficient of species j in the ith reaction and if [XJJ
denotes the chemical symbol of species j, the system of reactions takes the form

|4

[x]; = Z g {X]; G=12,...t) (38
j=t+1

Provided the reactions are expressed in this fashion, the nondimensional form of
the reactive conductivity becomes (appendix B)

0 AH; AHy ... AH;
* * * *
AHl Ell E12 . e Elt
AH; E’{z Ejy ... E3
* * * *
. |aet B}, B3 ... Ey o
Ap = - N e 39
*
[Edi
where
14
*
AH; = Z nijhj (40)
=1

3In reference 40, Brokaw gives a simpler formulation of this problem. However,
the original formulation proved more convenient for present purposes.
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The first approximation to 7\; is given by
t ( *)2
AX L= Z A (44)
Tl Ejj
i=1

This approximation corresponds to setting E. k(1 # k) equal to 0 in equation (39) Thus,
the approximation neglects coupling among the reactions in the sense that E1k truly
vanishes only when reactions i and k share no common dependent species. One could
easily derive a second approximation to include coupling effects; however, since the
approximations are used herein to aid in explaining deviations of present results from
those of other investigators and since these investigators use equation (44), a second
approximation to A} was not considered.

For the mixtures considered, accuracy problems were occasionally encountered in
the evaluation of equation (39) when a single set of chemical reactions was used to
describe the compositional changes throughout the entire ranges of temperature and pres-
sure. This difficulty arises because some of the elements in both the numerator and
denominator determinants become extremely large whenever one or more of the mole
fractions approach 0. Under these circumstances, the compositional changes should be
described by a different system of reactions. Thus, several different sets of reactions
are needed to evaluate A;‘. over the entire ranges of temperature and pressure. The

23



technique used to automatically select appropriate reactions is discussed in the following
paragraphs.

When all nine species were present in significant quantity, the following set of
reactions was used:

’\

(1) COg=CO+0

2) 0y =20

(3) Ng = 2N $ (45)

4) NOZN+O

(6) ¢c=CO-0

The number to the left of a reaction serves to identify the reaction and the independent
component involved in the reaction; that is, COg, O2, N9, NO, and C are designated as
components 1, 2, 3, 4, and 5, respectively. The dependent components, CO, O, N, and Ar
. are labeled as 6, 7, 8, and 9, respectively.

When one of the independent components vanishes while all the dependent compo-
nents are present in significant amounts, it is obvious from equation (41) that the diagonal
element corresponding to the reaction involving this component becomes unbounded. (For
example, Ej11 - as X1 - 0) Inspection of equations (41) and (42) reveals that all
other elements assume correct values. Accordingly, the form of equation (39) appropri-
ate to reactions (45), can be modified to give the correct form for this situation simply by
deleting the row and column containing the unbounded element in each determinant and by
shifting the remaining rows and columns. The process works just as well when several
independent species vanish simultaneously. In this work, the deletion and shifting pro~
cess was actuated by inspecting the magnitude of Egg.

When one or more of the species chosen as dependent vanish, the situation cannot be
handled as easily. It is not sufficient to omit reactions in equations (45); rather, com-
pletely new sets of reactions must be formulated. This is true because some species
chosen as independent in equations (45) become dependent under these circumstances.

The following cases proved sufficient for the three mixtures considered:

CaseI Equations (45)
Casell CO9 =CO+O
Oy = 20
NO :.21 Ng + O
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Case Il COg = CO +% 0y
. | 1
NO = 5 Ny + 3 Oy
Case IV No reaction

For each case, vanishing of an independent species was handled by the technique
previously explained for case I. Selection of the appropriate case was based on inspec-
tion of the mole fractions.

Prandtl number.- The Prandtl number is defined by

NCp

Np, = 46
Pr Mgx (46)
In terms of the variables used herein, this equation becomes
* Xk
ne
Npy =48 Ii (47)
25 My

where M, denotes the molar mass of the undissociated mixture in g/mole. The Prandtl
number defined by equation (47) is frequently termed the "effective Prandtl number" to
connote that both cg and 2* include reactive contributions. Two approximations to
the Prandtl number Nppy and Nprj were computed for air and CO2. These approx-
imations are given by

X oK
Pr,l= g0 i (48)
rI=
2 25 Muxf
* %k
PrII = 50 " (49)
r - 2 *
’ 5 My
where
z = 7‘:,1 + 2t + AR T (50)
)\.ﬁ = )\2:11 + )L.:lknt + A;,I (51)
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RESULTS AND DISCUSSION

In this section numerical results are given, in turn, for air, carbon dioxide, and the
Mars model atmosphere (43% CO2, 25% N3, and 32% Ar (by vol.)). For each mixture,
calculations based on the full equations are presented first. Then, for air and carbon
dioxide, calculations based on the full equations are compared both with those based on
approximate equations and with those of other investigators. Finally, the viscosity, total
conductivity, and Prandfl number of air are compared to the respective properties of
carbon dioxide and the Mars model atmosphere.

Since ionization was not taken into account in the computations, the results at a
given pressure are terminated at a cut-off temperature which was estimated by com-
paring thermodynamic properties, cI’; in particular, computed with and without ioniza-
tion taken into account. Normally, the temperature cut-off determined in this manner
corresponds to an electronic mole fraction between 5 X 10‘4 and 10-3.

Transport Properties of Air

The full-equation computations for viscosity, frozen conductivity, reactive conduc-
tivity, total conductivity, and Prandtl number are shown in figures 21, 22, 23, 24, and 25,
respectively. For a given pressure, the temperature dependence of each property can be
divided roughly into three portions, corresponding to the reactions taking place. From
1000° K to the region at which the curves start to diverge, the mixture remains essen-
tially chemically inert. Divergence can be attributed largely to the dissociation of oxy-
gen and to the formation and subsequent dissociation of nitric oxide. The large change in
properties at still higher temperature arises primarily because of nitrogen dissociation.

Figure 26 compares the viscosity from full-equation calculations at p = 1.0 atm
with the first and second approximations and also with the calculations of Hansen (ref. 21)
and Yos (ref. 22). The curve for the first approximation falls'consistently below that
for the full-equation calculation, reaching a maximum deviation of approximately
11.5 percent at 65000 K. The second-approximation curve lies below but much closer to
the full-equation curve; in fact, the deviations never exceed 1.5 percent. Yos' resulis lie
slightly above the full-equation values at low temperatures and slightly below at high
temperatures. Throughout most of the temperature range, Yos' values agree well with
the second-approximation values. This agreement was expected because he used the
same collision integrals for the major interactions and Brokaw's approximate equation
(ref. 38) derived from a third-order approximation to the full viscosity equation. In con-
trast, the agreement with Hansen's calculations is much worse, especially above 15000 K.
At the higher temperatures, his results consistently deviate from the full-equation values
by about 23 percent to 24 percent. The reason for this marked difference can be
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attributed to the fact that he uses simple kinetic theory and rough approximations for
collision cross sections.

As shown in figure 27, the same type situation exists for the frozen conductivity at
p = 1.0 atm as for viscosity. The curve for the first approximation always lies below
that for the full-equation calculation and has a maximum deviation of about 19 percent
between 60000 K and 70000 K. The second-approximation curve is also low, but deviates
by less than 6 percent. Yos' results, which were calculated from Brokaw's formula
derived from a third-order approximation, are in excellent agreement with the full-
equation values. On the other hand, Hansen's results are again low with maximum devia-
tion of about 29 percent at 6500° K.

Figure 28 illustrates the danger inherent in neglecting coupling among the reac-
tions, or equivalently, in using the first approximation, in.the computation of the reactive
contribution to the conductivity. Although the figure does not show it clearly, there is
substantial disagreement in the full-equation and approximate values near 2000° K. This
disagreement is relatively unimportant, however, because the reactive conductivity is a
small portion of the total conductivity in this temperature range. On the other hand, the
differences which arise from neglecting coupling due to NO dissociation between 4000° K
and 60000 K are extremely significant because A; is the principal part of the total con-
ductivity in this temperature range. The differences are even larger than they appear at
first glance. For instance, the percentage deviation of the first-approximation curve
reaches a maximum of 61.6 percent at 47000 K.

Also shown in the same figure are the calculations of Yos (ref. 22) and Hansen
(ref. 21). Since Yos used the first approximation to the reactive conductivity and Yun and
Mason's collision integrals, his result should, in principle, lie precisely on the dashed
curve. To discern why the point at 50000 K does not coincide with the dashed curve, Yos'
sources of thermodynamic information were investigated. Yos used mole fractions from
his reference 43 for the temperature range from 1000° K to 5000° K and mole fractions
from his reference 44 for temperatures above 5000° K. He also employed unpublished
calculations made at AVCO Corporation for his cp ; /R and hj /RT. It was found that
his reference 43 values of the mole fraction for NO differed greatly from the values used
herein, the largest deviation being 80 percent. As a check, the first approximation was
recalculated using Yos' sources of mole fractions and the present Cp,i /R and hj /RT.
Excellent agreement with Yos' values of A} were then obtained throughout the entire
temperature range. Hansen's results agree well with the first-approximation values up
to about 30000 K. His exceptionally low values between the two peaks are due primarily
to his complete neglect of the reaction NO = N + O. The lowness of Hansen's values in
the vicinity of the second peak is thought to be a direct consequence of his method for
obtaining collision cross sections because it has been shown that uncertainties associated
with this method increase rapidly at high temperature (ref. 23).
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The same general comments apply equally well to the total conductivity shown in
figure 29. Yos' results should agree closely, but not exactly, with the second-
approximation results, whereas Hansen's results should be in better agreement with the
first-approximation results. It is especially noteworthy that the second-approximation
value deviates from the full-equation value by 29.5 percent at 4700° K. Thus, the pre-
viously noted substantial divergence of the approximate reactive conductivity perpetrates
into the approximate total conductivity in a somewhat weakened but still significant

manner.

Since viscosity and conductivity enter directly into the Prandtl number, it is obvious
that the Prandtl number can be extremely sensitive to approximate calculations. This is
borne out in figure 30, which shows the full-equation Prandtl number, the first- and
second-approximation Prandtl numbers, and the results of Yos (ref. 22) and Hansen
(ref. 21). The striking differences in the approximate and full-equation calculations are
due primarily to the reactive-conductivity approximation. The largest deviations, occur-
ring at 47000 K, are 25.4 percent and 23 percent for the first- and second-approximation
values, respectively. Comparisons with the results of Yos and Hansen are complicated
by the fact that their values reflect differences in thermodynamic data. Hansen's values
of c; do not differ markedly from those used herein, and accordingly, most of the dif-
ference shown in the figure can be attributed to the use of different theories and to his
neglect of the NO reaction. In view of the rather large disagreement noted previously
for n* and \*,itis indeed surprising that Hansen's Prandtl numbers agree with the
full-equation values as well as they do. As noted previously, Yos employed two different
sources for mixture composition and one of these sources gives NO mole fractions which
differ markedly from the present ones. His calculation of the Prandtl number is incon-
sistent with these sources in the following sense. Yos used the composition from his
reference 43 for temperatures between 1000° K and 5000° K-and that from his refer-
ence 44 at higher temperatures, but he employed the cp/R values from his reference 43
throughout the whole temperature range. In order to obtain a useful comparison with his
results, the second approximation to the Prandtl number was recomputed using Yos'
sources of mole fractions and cp/R and the present cp /R and hi/RT. Figure 31
shows that these new values are in good agreement with Yos' calculations. It is evident
that the differences between Yos' Prandtl number and the second-approximation values
are primarily due to the differences in the thermodynamic data.

Transport Properties of Carbon Dioxide

The results of the full-equation calculations of viscosity, frozen conductivity, reac~
tive conductivity, total conductivity, and Prandtl number of carbon dioxide are presented
in figures 32, 33, 34, 35, and 36, respectively. Just as with air, for a fixed pressure, the
temperature variation of each of these properties can be split roughly into three regions
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depending upon the reactions taking place. Up to the point at which the curves initially
diverge, the gas consists of practically pure CO2. As the temperature increases beyond
this point, COg starts to dissociate into CO and 02, and with a small additional increase
in temperature, Og also sfarts to dissociate. Thus, the initial divergence, and for some
curves, the first peak, arises from the almost simultaneous dissociation of CO9 and Og.
After these reactions essentially go to'completion, CO dissociation begins. This reaction
is responsible for the rapid rise in viscosity and frozen conductivity and for the second
peaks in reactive conductivity, total conductivity, and Prandtl number.

For each of these properties, results of the full-equation calculations are compared
with approximate computations and with the results of Thomas (ref. 23) and Van Tassell
(ref. 24) in figures 37 to 41 for a pressure of 0.1 atm. Both Thomas and Van Tassell
attained widely varying Prandtl numbers at this particular pressure; therefore, this pres-
sure was chosen to ascertain why this variation was true. (Thomas also attained wide
variation at lower pressures but Van Tassell did not present data for p < 0.1 atm.)

In figures 37 and 38, the approximations for viscosity and frozen conductivity com-
pare with the full-equation calculations in much the same fashion as was found in the
comparison for air. Van Tassell's viscosity calculations were expected to be in good
agreement with either the exact values or the second approximation because he utilized
Yos' method (ref. 22) which was previously found to be quite good for air. No data from
Van Tassell is included in figure 38 because he does not present results for frozen con-
ductivity. For both viscosity and frozen conductivity, Thomas' results lie considerably
below even the first approximation; this too was expected since he utilized Hansen's
approach (ref. 21).

Figure 39, showing the reactive-conductivity comparisons, is particularly illumi-
nating. In the region between 1500° K and 27000 K, the approximation values are much
too low; in fact, the deviation from the solid curve approaches 100 percent near 15000 K.
Between 2700° K and 3500° K, the approximation yields exceptionally high predictions,
with a maximum deviation of 43 percent near 3000° K. No data are shown from Van
Tassell because he does not provide sufficient data to allow determination of this con-
tribution. With the exception of the point at 3000° K, Thomas' results agree well with
the exact calculation up to 5000° K. The lowness of his values in the vicinity of the
peaks is thought to be due to two possible causes: '

(1) As noted earlier, uncertainties involved in his method of finding collision cross
sections become larger with increasing temperature.

(2) Although he used the full equation for Ar, his equation for Ejix does not agree
with the original source (ref. 11). It is not clear whether this inaccurate equation was
actually used in his computations.
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Figure 40 shows clearly that the behavior of the reactive conductivity carries over
directly to the total conductivity. Only the first-approximation curve is shown because
the first- and second-approximation curves are practically indistinguishable. The data
point of Thomas at 40000 K seems to be in error because his tables for A, Af, and Ay
are inconsistent at this temperature.

Figure 41 clearly shows that Van Tassell's high values for Prandtl number around
2000° K are directly attributable to the use of approximate equations. In particular, the
exhibited behavior is directly traceable to the reactive-conductivity approximation. The
large disagreement of Thomas' values at 4000° K and 5000° K with the exact values is
attributable, respectively, to a tabular inconsistency and to an extremely low specific

heat.

Transport Properties of the Mars Model Atmosphere

The viscosity, frozen conductivity, reactive conductivity, total conductivity, and
Prandt]l number, as computed with the full equations, are presented in figures 42, 43, 44,
45, and 46, respectively. Qualitatively, these properties exhibit the same type tempera-
ture variation as previously observed for air and carbon dioxide. There are, of course,
distinct quantitative differences and these are treated in detail in the next section.

The initial divergence of the constant pressure curves given for these properties
stems from the dissociation of COg9. With a slight increase in temperature, Og dissocia-
tion also enters the picture. Thus, the lower temperature portions of the curves are
influenced by the coupled dissociation of COg and Og. As these reactions tend toward
completion, CO and N2 dissociations become predominant. It is these two reactions
which are largely responsible for the steep increase in viscosity and frozen conductivity
and for the second set of peaks in reactive conductivity, total conductivity and Prandtl
number. Although argon does not react to any appreciable extent, it does affect the quan-
titative character of the transport properties both through molecular interaction and
through its influence on the equilibrium composition.

Although no approximate calculations are given for this mixture, it is evident from
the two preceding examples that use of approximate equations would lead to serious error
in the total conductivity, and hence, the Prandtl number. This observation would be espe-
cially true in the low temperature range where COg and Og dissociate simultaneously.

To the authors' knowledge, transport properties for this mixture have not been
computed previously; hence, no comparisons are possible.
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Comparisons of the Transport Properties of Air, Carbon Dioxide,
and the Mars Model Atmosphere

In this section, the three mixtures are compared on the basis of the full-equation
calculations of viscosity, total conductivity, and Prandtl number. For convenience, air
is adopted as a standard and the properties of carbon dioxide and the Mars model atmo-
sphere are discussed in terms of their deviation from the corresponding air properties.
Attention is restricted to a pressure of 1.0 atm because similar results hold for the other
pressures.

Figure 47 compares the viscosities of the three mixtures. The viscosities of air
and carbon dioxide are quite similar in magnitude, the viscosity of the latter never devi-
ating from that of the former more than 6 percent. The viscosity of the Mars model
atmosphere always lies above that for both air and carbon dioxide, but its deviation from
that of the former is always less than 12 percent. There are, of course, distinctive fea-
tures in the fine details of the temperature variations, such as the characteristic rises
associated with the occurrence of chemical reactions.

The curves for air and carbon dioxide are expected to be similar after appreciable
dissociation of carbon dioxide, because the collision integrals and thermodynamic prop-
erties of the remaining atoms and diatomic species are similar. The higher viscosity of
the Mars model atmosphere is due mainly to the large amount of argon present in this
mixture,

Figure 48 illustrates the tremendous differences in the total conductivity of the
mixtures. In the temperature region between 2000° K and 4000° K, the conductivity of
CO2 deviates from that of air by as much as 180 percent and between 5000° K and 60000 K
by as much as 70 percent. For the Mars model atmosphere, deviations range from about
95 percent near 25000 K to about 34 percent near 5500° K.

As shown in figure 49, these large differences in total conductivity do not influence
the Prandtl numbers as much as one might expect. The reason for this, of course, is the
analogous behavior of the specific heat and total conductivity of the individual mixtures.
The deviation of the Prandtl number of COg from that for air ranges from about 12 per-
cent to 20 percent. The maximum deviation of the Prandtl number of the Mars model
atmosphere from that of air is about 10 percent. According to Horton and Zeh (ref. 41),
such difference can be significant in problems such as blunt-body stagnation-point heat
transfer.

It is noteworthy that Prandtl number comparisons based on the second approxima-
tion would differ greatly from those shown in figure 49. In particular, deviations of sev-
eral hundred percent would be observed.
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CONCLUSIONS

On the basis of the foregoing analysis, the following conclusions a-re justified:

1. Neglect of coupling terms in reactive-conductivity calculations for mixtures
containing COg9 can induce order of magnitude errors in total conductivity, and hence,
large errors in Prandtl number.

2. For the mixtures considered, second approximations give reasonable accuracy
(26 percent deviation from full-equation calculations) for viscosity and translational
thermal conductivity.

3. There exists a definite need for accurate interaction potentials for carbon-atom
and carbon-molecule interactions. The accuracy of high-temperature transport proper-

ties of mixtures containing carbon elements and/or compounds must be regarded as
uncertain until such potentials become available. However, the present calculations are

regarded as the best presently available.
4. Accurate mixture specific heat is essential to accurate Prandtl number
calculations.

It should be emphasized that conclusions 1 and 2 are independent of conclusion 3
because carbon—other-particle interaction potentials were used consistently in all

calculations.
Langley Research Center,

National Aeronautics and Space Administration,
Langley Station, Hampton, Va., July 1, 1969.
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APPENDIX A
ORIENTATION-AVERAGED POTENTIALS FOR COg INTERACTIONS

The purpose of this appendix is to develop high-temperature potentials for binary
interactions of COg with atoms, diatomic molecules, and other CO2 molecules. The
basic idea is to construct the potential for two interacting particles from known potentials
for interactions of atoms comprising the particles. This leads directly to an orientation-
dependent particle potential which is then averaged over all possible orientations to yield
an effective potential dependent only on the center-of-mass separation of the particles.
Appropriate equations for atom—diatomic-molecule and diatomic-molecule—diatomic-
molecule potentials are presented in reference 19.

The procedure incorporates the following simplifying assumptions (ref. 19):
(1) Each molecule can be treated as a rigid structure with ground-state dimensions.

(2) Atomic interactions are independent and each atomic interaction potential has
the form

¢ = Ae~2R (A1)

where R is the interatomic separation distance.
(3) All molecular orientations are equally probable.

Sketch 1 shows appropriate coordinate systems and nomenclature for the establish-
ment of the interaction potential for the encounter of molecule AB with a symmetric, tri-
atomic linear molecule DCD. For a particular configuration, assumption (2) implies that

qb(r,91,w1,92,w2) =¢ac + Ppc t ¢AD1 + ¢AD2 + ¢BD1 + ¢BD2 (A2)

Yq

Sketch 1
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where each term has the form given in equation (Al). Subscripts 1 and 2 are affixed
to the D atoms because the distances from these atoms to atoms A and B generally differ,
and hence, the potentials also differ; that is, in general, ¢ AD1 # ¢ ADg and

$BD; * $BDy"
The orientation-averaged potential, ¢(r) is related to ¢(r,61,w 1,92,w2) by

1 27 27 T . T ) )
o(r) =m5w2=0 S‘w1=0 592=0 561-:0 ¢ r,Bl,wl,Bz,wz) sin 61 sin 09 df1 dfg dw; dwy
(A3)

Note that no Boltzmann weighting factor occurs in this equation; this is consistent with
assumption (3). '
When equation (A2) is substituted into equation (A3), one finds that the six resulting

integrals are quite complex and difficult to integrate. However, one can easily demon-
strate that the integral of ¢, has the same form as that for ¢~ and also that the

integrals of ¢AD1’ ¢)AD2’ ¢BD1’ and quDZ have the same form. Hence ¢(r) can

easily be found once the averaged potential for the A-C and A-D1 interactions are known.

The averages of ¢ AC and ¢ AD A RADq Dy
must obviously be independent of the par- -
ticular choice of coordinate systems. da dp
Sketch 2 shows a new coordinate system
which leads to marked simplifications in r c
the integrals. Denoting the averaged val- dg dp
ues of bpc and Pap by <¢AC> and
respectively, one obtains B
<¢AD> ’ P Vs Sketch 2 D2
_AAc (T -apcRac
<¢AC> == 0e sin 61 dég (Ad)
A T T —a.nR
<¢AD> = —%So Soe ADTAD gin 91 sin 63 d61 déy (A5)
where
9 1/2
RA = (rz - 2rdA COs 91 + dA) (AG)
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Carrying out the indicated operations yields

<¢AC> AI;ZLd_—KaACr + 1) sinh (aACdA> - a,cd, cosh (aACdAEI (A8)
ACYAT

A, T
A

AD
<¢AD> ‘;DZ - KaADr + 2) sinh (aADdA) sinh (aADdD)

- aADdA cosh (aADdA) sinh (aADdD)

-a ADdD cosh (a ADdD) sinh (a ADd Aﬂ (A9)

Averages for the remaining atomic potentials in equation (A2) can now be obtained by
changing the subscripts appropriately in equations (A8) and (A9).

Use of these results leads directly to the following potentials for the CO3-NO,
CO02-039, and COg-Ng interactions:

Ayge NCT Agge 20CT
¢(COZ-NO) = > KaNcr + 1) sinh (aNCdN) - aycdy cosh (aNCdNH 2 [ oct + l) sinh (aocd ) Apgdp cosh (aocdoﬂ
aNcONT apcdor
ZANOe-aNor
T[:(aNor + 2) sinh (aNOdN) sinh (aNOdD) - aNOdN cosh (aNOdN> sinh (aNOdD) ~ aNOdD cosh (aNOdD) sinh (aNOdN]
Nodndpr
28508 T
+ TTKaoor + 2) sinh (aoodo) sinh (aOOdD) - agpdg cosh (aOOdO) sinh (aoon - agpdp cosh (aOOdD) sinh (aOOdOE] (A 10)
2oo%“p”
e-aocr Aot -aoor
47(002 02) [(aocr + 1) sinh (aOCdO) aggdg cosh aocdo)] [(aoor + 2) sinh (aOOdO> sinh (aOOdD)
aocd T aoododDr
- aggdg cosh (aood& sinh (aOOdD> - aggdp cosh (aoodD) sinh (aoodoﬂ (A11)
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-a r

2Ayce NC 0 .
¢(C02-N2) = _—Z——_LgaNCr + 1) sinh (aNCdN> - aycdy cosh (aNCdNE
aNCdNr
4Ay e NO
+mﬁaNor +2> sinh (aNOdN) sinh (aN OdD)

- aNOdN cosh (aNOdN) sinh (aNOdD>
- a’NOdD cosh (aNOdO) sinh (aNOdNH (A12)

In each of these equations dD denotes the length of the C-O bond in the COg9 molecule.

The meaning of the other d symbols depends upon the particular interaction. For
example, in equation (A10) dN denotes the distance of the N atom from the center of
mass of the NO molecule whereas in equation (A12) dN denotes the distance of the
N atom from the center of mass of the Ng molecule.

By similar analyses one can also establish the following potentials:

cp(coz-coz) = Acce'aCCr

-annT
+4_A§__OC=L<'aocr + 1) sinh (aOCdD) - aOCdD cosh (aOCdD>:|

ocp®

-a I
00
4AOOe

+ a%odlz)rr L(aoor + % sinh <aOOdD> sinh (aOOdD>

- 2a5dp, cosh (aOOdD) sinh (aOOdDj_] (A13)

-N) = “anct M inh d} - a,;~dy cOsh (a
¢(002 N) Axce +— [gaNOr + 1) st (aNO D) NO°D ( NOdD]
aNOdDr

(A14)
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-a r 2Aooe-aoor
¢(C02-0) =Agce oC” ¢ 5 Kaoor + 1) sinh (aOOdD) - 2509 cosh aOOdDj
a.oodDr
(A15)
¢>(COZ-Ar> = AArce-aArcr
-a r
2A e ArQO
ArO .
+ a; e Ka Arof *+ 1) sinh (a ArOdD) -a ArOdD cosh (aArOdDﬂ
ArO-D

(A16)
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ESTABLISHMENT OF EQUATIONS FOR VISCOSITY, TRANSLATIONAL
CONDUCTIVITY, AND REACTIVE CONDUCTIVITY

In this appendix, the expressions for viscosity and translational thermal conductiv~
ity resulting from the first approximation of first-order Chapman-Enskog kinetic theory
are cast into convenient forms for numerical computation. A convenient form for the
reactive contribution to the thermal conductivity is also derived, and a first and second
approximation for viscosity and translational conductivity and a first approximation for
the reactive conductivity are developed.

The viscosity of a v-component gas mixture is given by (ref. 7)

Hyp Hpp -or By X
Hip  Hyy Hyy %
Hyy Hyy Hypy x
X X X 0
1 2 v
n=- (B1)
Hijl
where lHij’ denotes the determinant of the Hij elements defined by
2 Y
Xj Z 2% mr (, .3
Hjj =—+ ) —J1 =2 1+——A1 (B2)
Moo Mi+ MjpDy\ S M y
i#
2X:X
1] RT 3 A% /s
Hi; = - 1-2AT B3
LIS VA V3 pDij< 5A11> @#y) (B3
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Here m;, the viscosity of species i, is given by

o \2 -
_J5/[R 1/2 16/ _A | M;T
N = {—f— X |10+9— _— (B4)
16 77N2 cm, —(2,2)
A 44
with 5(2’2) expressed in units of 2’&2. The binary diffusion coefficient of species i
and j, Dij’ is given by
1/2 ¢ \2 3
Djj = 3(m3 / X 1016(_£> 1 V(Ml M M:i)T (B5)
cm, — <M
8 ﬂNi in(].1,1) 2M1M]
—(1,1 0
where Q( ) is also expressed in AZ.

1)

It is convenient to arbitrarily define a reference viscosity Mo by

3/R 1/2 1/2
0= {S—— x [1016 g \IT (B6)
8 ﬂNi cm ~mole

This particular choice was made solely because it leads to convenient numerical values
for the dimensionless viscosity 7*. Dividing equation (B1) by equation (B6) and substi-
tuting equations (B4) and (B5) into equations (B2) and (B3) give

* % *
* * *

H12 sz « & e HzV Xz
* * *

Hyyp Hy,, H,, %,

X1 X9 . e Xy 0

n*=l=- - (BT)
o Hij
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where
=(2,2) 2 v
« L ZQ X§ (1 1)
Hj; = +2 x;%;Cyq ,ij 1] (B8)
|/'1*7II i
i#
* —(1,1) o
Hjj = -2xi%;Cp 1;%j (1 %Afj) (i #13) (B9)
3 M; .
Crij={1 +gﬁilA1j Ca ij (B10)
C3,ij
»1]
Co i = —2d
2,ij M + M (B11)
2M: M
C 1 B12

The reasons for defining C in this fashion are twofold. First, they can be computed
once at the beginning of the calculations and used throughout the whole range of tempera-
tures and pressures. (Recall that A;j is taken as being constant.] Second, some of
these same quantities occur naturally in conductivity equations. Although the units are
not shown in equations (B8) and (B9), it is easily verified that Hfl (= 'r]OHﬁ> and Hf]

<= UoHij) are actually nondimensional.

According to reference 7, equation (B7) can be expanded as

x2 v xxH
Z . .. (B13)
;

| 4 |4

SES)
*

i=1H1 i=1

ii

The first term in this expansion will be referred to as the first approximation nf and
the first two terms will be referred to as the second approximation ni“I. Thus

e ) = (B14)
i=1

40

§ 4l



vV 2 v |4 *
* Xi XiX]Hi]
o= Y e (B15)
I H* )2 9 :
j=1 11 i=1 ]:1 117])
i

The translational thermal conductivity can be treated in a completely analogous
fashion. According to Muckenfuss and Curtiss (ref. 13), the governing equation is

Lirn L2 -0 I %
Ly LZV ... L, Xy
X X .. X 0
A =4l t 2 v (B16)
=
where
x 4 XX /
i ilGT 7 15 M2 4 25 32 | 3n2B) M.AX
Lij = Z 2 M{ + 22 My - 3MByj + 4M1MJA1]-> (B17)
=1 (M1 + M]) ij
j#
X:X M; M;
Ly = ;gT i%] 5 — J/_54§ - 3B}; - 4A;‘j> i#£j)  (B18)
P (M M) ij \
In equation (B17), 1, the thermal conductivity of pure component i, is defined by
1/2 o \2
_Jus(R3 16/ A T/M;
Np i’
’) N . 22
where Qu is expressed in A",
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After nondimensionalizing A{ with a reference conductivity defined by

1/2

3 1/2
Ao = 15 [R % 1016 mole l/:f.
1282 g-cm

and using equation (B5) to eliminate Djj, equation (B16) can be expressed as

* * *
Ip Lz -+ I X
* * *
Lip Lpg - -+ Loy %
* * *
Ly, Loy, - - L, X
)\*—At—4 X1 Xg Xy 0
t ™ _)G - *
Lij
where
(2,2) Y (1,1)
* 2= ey
Lij; = -2x3 Q45 VE - Z xi%;Cg 1iCa 1;%;j
=1
i
—(1,1) .
L;} = XinC2,ijCS,ijQij ’ i#7j)
15,2 25 ,.2 2% *
4,1 M; + MJ
55 * *
M1M1<Z— - 3Bij - 4Aij>
Cs,1j = M, + M
i ]

(B20)

(B21)

(B22)

(B23)

(B24)

(B25)

With the assumed constancy of A;(j and B’i“j, this formulation proves especially con-

venient for numerical evaluation.
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Equation (B21) can be expanded as

v _2 v v *
X X Liss
Z —}.—; Z Z —J——lxl* i + (B26)
i=1 Mii =1 j=1 Lailyj
jAL
The first approximation is defined as
v .2
X
Afp= -4 Z - (B27)
’ Lis
j=1 il
and the second approximation as
At,H =-4 Z — Z (B28)

i=1 Lij

\u\qu
*N
'—‘-!-

According to Butler and Brokaw (ref. 11), the reactive contribution to the conduc-
tivity of a v-component system whose equilibrium composition is described by t inde-
pendent chemical reactions has the form

0 AH, AH, ... AH
AH;  Ejy Eyg Eqt
o AH; E; Ep ... Ey ©20)
= -
RT? Ej

where AH; is the enthalpy of reaction of the ith independent reaction and
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v-1 Y 2 v t
(nijm - nkIan) 2 X
Bk = Z Z Amj XjXm * Z Z D Apj EE
j=t+1 m=j+1 j=t+1 p=1 ]
p#k
t 2
X X. + nNy.:X
P . ( i K] k) -
+ Z Apk Xk + Ak] T (k = 1,2’"°,t)
p=1 j=t+1 L
p#k
(B30)
v-1 v v t
. A (M5%m - 1 %3) (Mo nkmxj) Xy
ik = mj XX Tt 0jj0%;j Apj %
j=t+1 m=j+1 ] j=t+1 p=1 !
v
‘) (o 53 * 3 ) - A (L = 1,2,....0)
j=t+1
(B31)
RT
Aj; = (B32)
4" pDjj
Dividing equation (B29) by 1, and introducting equation (B5) for Dij yield
* * *
0 AH]; AH, ... AH;
aH, EY, E* E
1 11 12 ct 1t
* * * *
AH; Ej, Ejy ... Ey
* * * *
. A |AHE ER By ... Ey
e S L (B33)
Ao EX
ik
where
v
AH;‘ = Z nljh; (B34)
j=1
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v-1 v
- A¥ (nk]Xm - nkmx]) 2 A Xp
kk = mj XXm * kj 4pj
j=t+1 m=j+1 j=t+1 p=1
p#k
C o Y ()
+ Z Apk'x—k+ Z Ak] _?xk— (k = 1,2,...,t)
p=1 j=t+1 ]
p#k
(B35)
v-1
X - Z Z A (IH] m ~ Ym¥ ])(nk] m nkmX Z Z AF
ik = XX 03i%%j 2pi %7 xJ
j=t+1 m=j+1 ] j=t+1 p=1
v
+ Z (nkj A;j + Dy Altj) - A;‘k (i,k=1,2,...,t)
j=t+1
(B36)
* 5—(171)
° Afj =22 0557 Cy 45 (B37)
When equation (B33) is expanded, the first approximation is
" ¢ AH
r Z (B38)
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TABLE 1
BINARY INTERACTIONS FOR DISSOCIATING COg9-Ng-Ar MIXTURES WITHOUT IONIZATION

CO2-CO; CO3-Oy  CO2-Nz  CO2-NO  CO3-CO  CO2-O  [CO2-N]  [COp-C]  COg2-Ar

(02-02) (Oz-Nz) 09-NO 09-CO (02-@ [02-N] [0p-C]  0p-Ar

(Nz-Nz) (Ng-No) Ng~CO (Nz-o) (NZ-N) Ng-C Ng-Ar

(No-NQ) ~NO-CO (NO-O)  NO-N  NO-C  NO-Ar
CO-CO C0-0  CO-N  CO-C  CO-Ar

( o-q ( o-N) 0-C 0-Ar

(NN N-C N-Ar

c-C C-Ar

Ar-Ar

Parentheses around a pair designate that its interaction potential has been considered previously and that the
corresponding collision integrals can be obtained from reference 19.

Brackets around a pair mean that an accurate interaction potential is not critical because one or both of the
mole fractions are always small.
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Interaction

Interactions enclosed

by parentheses in
table 1

CO-atom or molecule

Ar-Ny

Ar-NO

Ar-O

€0,-COy

CO3-03

COg-Ng

COz-NO

COg-Ar

C0y-0

N-NO

C-NO

c-0

Remainin;

C-Interactions

TABLE 2

INTERACTION POTENTIALS FOR DISSOCIATING COg-Ng-Og~Ar MIXTURES

Potential (r in &)

See reference 19

Use Ng-atom or molecule potentials

Exp-6: o =155, ¢/k=127.50K,
Iy = 3.796 &
1360 ev
834

Exp-6: a=156.5, ¢k=11L6°K,
rm=3.938 A

760

v
778

T

2382¢73-205F oy

1025¢73-3307 oy

142.4

ev

Exp-6: o= 14, ¢/k=123.2°K,
I = 3.866 A

32300e™ 4467 oy

6-12: o =3.807 A, ¢/k=213°K

-2.166r v
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Temperature range

Low

included because either one or both of the species involved in these interactions

are always small. Transport-property calculations were made with various potentials for these interactions and absolutely no change in the

Reference

19

19, 25
29
25

28

18, 19, 20

18, 20

28
25

20
32
Appendix A

31

Appendix A

31

Appendix A
7

Appendix A

Appendix A

Appendix A

18, 19

Comments

Averages of tabulated values were
used for minor interactions

See section "Carbon monoxide
interactions”

Obtained from viscosity data and
combination rules

Scattering potential

Obtained from viscosity data and
combination rules

Scattering potential

See section "Argon interactions”

Obtained from equations (10)
and (11) by combination rule

Obtained indirectly from scat-
tering data

Obtained from scattering data
Obtained from viscosity data
Obtained by averaging

Obtained from diffusion data

Obtained by averaging; equa-
tion (11) used for ¢(0-0)

Obtained from diffusion data

Obtained by averaging; equa-
tions {14) and (15) used for
&(N-N) and ¢(N-O)

Obtained from viscosity data and
combination rules

Obtained by averaging; equa-
tions (11), (14), and (1% used
for 8(0-0), ¢(N-N), and
$(N-0)

Obtained from viscosity data and
combination rules

Obtained by averaging

Obtained by averaging; equa-
tion (11) used for $(0-0)

Obtained by averaging; equa-
tions (14) and (15) used for
#(N-N) and ¢(N-O)

Obtained by averaging; equa-
tion (14) used for é(N-C)
and ¢(0-C)

See section "Carbon interactions™

See sections "Carbon interactions”
and “"Carbon dioxide interactions™

o
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oK

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000

TABLE

3

COLLISION INTEGRALS

Ar-Ar Ar-Op Ar-Ng Ar-0O Ar-N Ar-NO CO2-0y
5(151)’ 5(252), 5(191)’ 5(2’2), 5(1’1), 5(2,2), 5(1,1), 5(2’2), 5(171), 5(2’2)’ 5(1,1)’ 5(2,2)’ 5(1:1), 5(2,2),
B2 | a2 | 32 | B2 | A2 | R | A% | &% | &2 | R | A% | R | g2 | g2
8.73 9.91 8.94 9.95 9.40 10.49 | 6.98 8.23 6.90 8.39 9.03 10.54 | 9.60 10.56
7.50 8.55 8.22 9.33 8.56 9.66 | 6.35 7.54 6.16 7.48 8.29 9.72 | 8.94 9.80
6.92 7.95 7.61 8.84 7.80 9.00 | 5.93 7.06 5.67 6.89 7.78 9.17 | 8.50 9.38
6.48 7.60 7.13 8.41 7.18 8.48 | 5.61 6.70 5.33 6.48 7.41 8.74 | 8.20 9.07
6.20 7.29 6.78 8.04 6.75 8.08 | 5.36 6.42 5.08 6.18 7.10 8.41 | 17.98 8.86
6.04 7.03 6.54 7.75 6.48 7.78 | 5.15 6.18 4.83 5.88 6.85 8.12 | 17.80 8.68
5.88 6.82 6.35 7.52 6.27 7.53 | 4.97 5.98 4.67 5.68 6.63 7.88 | 17.65 8.52
5.76 6.65 6.17 7.31 6.08 7.30 | 4.82 5.80 4.51 5.49 6.45 7.68 | 17.51 8.38
5.65 6.53 6.02 7.13 5.92 7.10 | 4.68 5.65 4.38 5.32 6.28 7.49 | 7.38 8.24
5.55 6.42 5.88 6.97 5,78 6.94 | 4.56 5.52 | 4.27 5.19 6.14 7.33 | 7.26 8.13
5.46 6.32 5.76 6.82 5.65 6.78 | 4.45 5.39 4.16 5.06 6.01 7.18 | 7.14 8.03
5.38 6.23 5.64 6.69 5,54 6.65 | 4.35 5.27 4.06 4.94 5.89 7.04 | 17.02 7.96
5.31 6.15 5.55 6.58 5.44 6.52 | 4.26 5.17 3.99 4.85 5.78 6.92 | 6.91 7.87
5.23 6.07 5.45 6.46 5.34 6.40 | 4.17 5.07 3.92 4.71 5.68 6.81 | 6.80 7.80
5.17 6.01 5.36 6.36 5.25 6.29 | 4.09 4.98 3.83 4.66 5.58 6.70 | 6.70 7.3
CO3-Ny C0O9-0 CO3-Ar CO9-NO C09-COy NO-N NO-C
LD | @2 |51 |52 |g11) |5@.2) |gLD) |52 |50D | 52,2 |50D 5.2 | 50,1 | 502
A? AZ A? AZ A? AZ Az A2 AQ A? AZ AZ ﬁ? 52
9.94 10.84 | 9.72 11.71{ 10.90 | 12,03 | 11.05 | 12.21 | 13.08 | 14.40 | 7.84 9.44 7.78 9.36
9.26 10.23 | 8.75 10.71 | 10.14 | 11.25 | 10.30{ 11.44 | 12.10 | 13.38 | 7.02 8.50 6.96 8.43
8.84 9.80 | 8.01 9.85 9.68 | 10.79 9.88 | 10.99{ 11.50 | 12.78 | 6.46 7.87 6.41 7.81
8.54 9.50 | 17.46 9.21 9.28 | 10.43 9.51 | 10.62 | 11.13 | 12.40 | 6.05 7.39 6.00 7.34
8.30 9.28 | 17.02 8.70 8.93 | 10.15 9.14 | 10.31 | 10.83 | 12.05 | 5.72 7.01 5.68 6.97
8.10 9.08 | 6.65 8.28 8.64 9.89 8.78 | 10.07 | 10.55} 11.78 | 5.45 6.70 5.41 6.66
7.94 8.90 | 6.35 7.93 8.39 9.68 8.46 9.86 | 10.30 | 11.52 | 5.22 6.44 5.19 6.40
7.79 8.76 | 6.09 7.62 8.18 9.51 8.18 9.67{ 10.04 | 11.30 | 5.02 6.21 4.99 6.17
7.65 8.63 5,86 7.35 7.99 9.35 7.93 9.48 9.80 | 11.15 | 4.85 6.01 4.82 5.97
7.51 8.51 | 5.67 7.11 7.82 9.20 7.69 9.30 9.56 | 10.98 | 4.69 5.83 4.67 5.79
7.37 8.41 | 5.46 6.90 7.67 9.05 7.49 9.11 9.34 | 10.88 | 4.55 5.67 4.53 5.63
7.24 8.31| 5.31 6.70 7.53 8.90 7.30 8.94 9.12 | 10.75 | 4.43 5,52 4.40 5.49
7.11 8.22 | 5.16 6.52 7.40 8.76 7.13 8.77 8.92 | 10.66 | 4.31 5.39 4.29 5.36
6.98 8.16 | 5.02 6.36 7.29 8.64 6.97 8.61 8.73 | 10.53 | 4.21 5.26 4.19 5.23
6.85 8.08 | 4.89 6.21 | 7.17 8.51 6.83 8.44 8.56 | 10.43 | 4.11 5.15 4.09 5.12
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Figure 1.- Equilibrium mole fractions of high-temperature air for several pressures.
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Figure 2.~ Equilibrium mole fractions of high-temperature COy for several pressures.
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Figure 4.- Variation of nondimensional mixture specific heat of air with temperature.
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Figure 6.- Variation of nondimensional mixture specific heat of Mars model atmosphere with temperature.
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Figure 21.- Variation of nondimensional viscosity of air with temperature.
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Figure 26.- Comparison of full-equation calculation of nondimensional viscosity of air with approximate calculations
and previous results for p =1 atm,
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Figure 27.- Comparison of full-equation calculation of nondimensional frozen conductivity of air with approximate calculations
and previous results for p =1 atm.
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Figure 28.- Comparison of full-equation calculation of nondimensional reactive conductivity of air with approximate calculations
and previous results for p = 1 atm.
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Figure 29.- Comparison of full-equation calculation of nondimensional total conductivity of air with approximate calculations
and previous results for p = 1 atm,
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Figure 30.- Comparison of full-equation calculation of Prandtl number of air with approximate calculations
and previous results for p = 1 atm.
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Figure 33.- Variation of nondimensional frozen conductivity of CO2 with temperature.
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Figure 34.- Variation of nondimensional reactive conductivity of CO2 with temperature.
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Figure 35.- Variation of nondimensional total conductivity of COp with temperature.

100



1.1

1.0

9

5

<3

p = 0.00L Atm

Temperature, %k

Figure 36.- Variation of Prandtl number of COp with temperature.
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Figure 37.- Comparison of full-equation calculation of nondimensional viscosity of COz with approximate calculations
and previous results for p = 0.1 atm.
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Figure 38.- Comparison of full-equation calculation of nondimensional frozen conductivity of COy with approximate calculations
and previous results for p = 0,1 atm.
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Figure 39.- Comparison of full-equation calculation of nondimensional reactive conductivity of CO2 with approximate calculations
and previous results for p = 0.1 atm.
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Figure 40.- Comparison of full-equation calculation of nondimensional total conductivity of CO with approximate caicufations
and previous results for p = 0.1 atm.
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Figure 41.- Comparison of full-equation calculation of Prandtl number of COp with approximate calculations
and previous results for p = 0.1 atm.
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Figure 42.- Variation of nondimensional viscosity of the Mars model atmosphere with temperature.
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Figure 43.- Variation of nondimensional frozen conductivity of the Mars model atmosphere with temperature.
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Figure 44.- Variation of nondimensional reactive conductivity of the Mars model atmosphere with temperature.
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Figure 45.- Variation of nondimensional total conductivity of the Mars model atmosphere with temperature.
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Figure 46.- Variation of Prandtl number of the Mars model atmosphere with temperature.
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Figure 47.- Comparison of nondimensional viscosities of air, CO, and the Mars model atmosphere for p = 1.0 atm.
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Figure 48.- Comparison of nondimensional total conductivities of air, COp, and the Mars model atmosphere for p = 1.0 atm.
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Figure 49.- Comparison of Prandtl numbers of air, CO2, and the Mars model atmosphere for p = 1.0 atm.
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